Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 516
Filtrar
1.
Sci Rep ; 14(1): 4682, 2024 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-38409185

RESUMO

Malaria can have severe long-term effects. Even after treatment with antimalarial drugs eliminates the parasite, survivors of cerebral malaria may suffer from irreversible brain damage, leading to cognitive deficits. Angiotensin II, a natural human peptide hormone that regulates blood pressure, has been shown to be active against Plasmodium spp., the etiologic agent of malaria. Here, we tested two Ang II derivatives that do not elicit vasoconstriction in mice: VIPF, a linear tetrapeptide, which constitutes part of the hydrophobic portion of Ang II; and Ang II-SS, a disulfide-bridged derivative. The antiplasmodial potential of both peptides was evaluated with two mouse models: an experimental cerebral malaria model and a mouse model of non-cerebral malaria. The latter consisted of BALB/c mice infected with Plasmodium berghei ANKA. The peptides had no effect on mean blood pressure and significantly reduced parasitemia in both mouse models. Both peptides reduced the SHIRPA score, an assay used to assess murine health and behavior. However, only the constrained derivative (Ang II-SS), which was also resistant to proteolytic degradation, significantly increased mouse survival. Here, we show that synthetic peptides derived from Ang II are capable of conferring protection against severe manifestations of malaria in mouse models while overcoming the vasoconstrictive side effects of the parent peptide.


Assuntos
Antimaláricos , Malária Cerebral , Animais , Camundongos , Humanos , Malária Cerebral/tratamento farmacológico , Malária Cerebral/prevenção & controle , Malária Cerebral/parasitologia , Angiotensina II/farmacologia , Angiotensina II/uso terapêutico , Modelos Animais de Doenças , Antimaláricos/farmacologia , Antimaláricos/uso terapêutico , Peptídeos/farmacologia , Peptídeos/uso terapêutico , Plasmodium berghei/fisiologia , Camundongos Endogâmicos C57BL
2.
EMBO Mol Med ; 16(2): 319-333, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38297098

RESUMO

Cerebral malaria (CM), the most lethal complication of Plasmodium falciparum severe malaria (SM), remains fatal for 15-25% of affected children despite the availability of treatment. P. falciparum infects and multiplies in erythrocytes, contributing to anemia, parasite sequestration, and inflammation. An unbiased proteomic assessment of infected erythrocytes and plasma samples from 24 Beninese children was performed to study the complex mechanisms underlying CM. A significant down-regulation of proteins from the ubiquitin-proteasome pathway and an up-regulation of the erythroid precursor marker transferrin receptor protein 1 (TFRC) were associated with infected erythrocytes from CM patients. At the plasma level, the samples clustered according to clinical presentation. Significantly, increased levels of the 20S proteasome components were associated with SM. Targeted quantification assays confirmed these findings on a larger cohort (n = 340). These findings suggest that parasites causing CM preferentially infect reticulocytes or erythroblasts and alter their maturation. Importantly, the host plasma proteome serves as a specific signature of SM and presents a remarkable opportunity for developing innovative diagnostic and prognostic biomarkers.


Assuntos
Malária Cerebral , Malária Falciparum , Criança , Humanos , Plasmodium falciparum , Proteômica , Malária Cerebral/parasitologia , Eritrócitos/parasitologia
3.
Brain Res ; 1822: 148669, 2024 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-37951562

RESUMO

Cerebral malaria (CM) pathogenesis is described as a multistep mechanism. In this context, monocytes have been implicated in CM pathogenesis by increasing the sequestration of infected red blood cells to the brain microvasculature. In disease, endothelial activation is followed by reduced monocyte rolling and increased adhesion. Nowadays, an important challenge is to identify potential pro-inflammatory stimuli that can modulate monocytes behavior. Our group have demonstrated that bradykinin (BK), a pro-inflammatory peptide involved in CM, is generated during the erythrocytic cycle of P. falciparum and is detected in culture supernatant (conditioned medium). Herein we investigated the role of BK in the adhesion of monocytes to endothelial cells of blood brain barrier (BBB). To address this issue human monocytic cell line (THP-1) and human brain microvascular endothelial cells (hBMECs) were used. It was observed that 20% conditioned medium from P. falciparum infected erythrocytes (Pf-iRBC sup) increased the adhesion of THP-1 cells to hBMECs. This effect was mediated by BK through the activation of B2 and B1 receptors and involves the increase in ICAM-1 expression in THP-1 cells. Additionally, it was observed that angiotensin-converting enzyme (ACE) inhibitor, captopril, enhanced the effect of both BK and Pf-iRBC sup on THP-1 adhesion. Together these data show that BK, generated during the erythrocytic cycle of P. falciparum, could play an important role in adhesion of monocytes in endothelial cells lining the BBB.


Assuntos
Barreira Hematoencefálica , Bradicinina , Adesão Celular , Malária Cerebral , Malária Falciparum , Plasmodium falciparum , Humanos , Bradicinina/metabolismo , Adesão Celular/fisiologia , Meios de Cultivo Condicionados/farmacologia , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/fisiologia , Eritrócitos/parasitologia , Malária Cerebral/metabolismo , Malária Cerebral/parasitologia , Malária Falciparum/metabolismo , Malária Falciparum/parasitologia , Monócitos/fisiologia , Plasmodium falciparum/fisiologia , Barreira Hematoencefálica/fisiopatologia
4.
Cells ; 12(7)2023 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-37048057

RESUMO

Neural injuries in cerebral malaria patients are a significant cause of morbidity and mortality. Nevertheless, a comprehensive research approach to study this issue is lacking, so herein we propose an in vitro system to study human cerebral malaria using cellular approaches. Our first goal was to establish a cellular system to identify the molecular alterations in human brain vasculature cells that resemble the blood-brain barrier (BBB) in cerebral malaria (CM). Through transcriptomic analysis, we characterized specific gene expression profiles in human brain microvascular endothelial cells (HBMEC) activated by the Plasmodium falciparum parasites. We also suggest potential new genes related to parasitic activation. Then, we studied its impact at brain level after Plasmodium falciparum endothelial activation to gain a deeper understanding of the physiological mechanisms underlying CM. For that, the impact of HBMEC-P. falciparum-activated secretomes was evaluated in human brain organoids. Our results support the reliability of in vitro cellular models developed to mimic CM in several aspects. These systems can be of extreme importance to investigate the factors (parasitological and host) influencing CM, contributing to a molecular understanding of pathogenesis, brain injury, and dysfunction.


Assuntos
Malária Cerebral , Humanos , Malária Cerebral/metabolismo , Malária Cerebral/parasitologia , Malária Cerebral/patologia , Células Endoteliais/metabolismo , Reprodutibilidade dos Testes , Encéfalo/patologia , Plasmodium falciparum , Organoides/metabolismo
5.
Immunol Lett ; 256-257: 9-19, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36931472

RESUMO

Cerebral malaria (CM), a major cause of mortality in children <5 years, presents disparity in pathophysiological features and poor prognosis compared to adults. Adult C57BL/6J mice infected with Plasmodium berghei ANKA (PbA) are widely used to understand CM pathogenesis compared to relatively less prone BALB/c mice; however, age and immune status of the host also influence disease sequelae and cerebral manifestations. Murine models of CM known so far do not project complete disease spectrum of pediatric CM. The present study was designed to dissect and differentiate CM immunopathogenesis in "young" BALB/c and C57BL/6J mice infected with PbA, in search of a competent mouse model mimicking pediatric CM. Multipronged approach including the analysis of blood-brain barrier (BBB) permeability and parasite infiltration, histopathology, nitric oxide levels, and pro/anti-inflammatory (TNF-α, IFN-γ, IL-4, and IL-10) cytokine expression were compared in the cortices of both young BALB/c and C57BL/6J mice. The results illustrate severe course of infection and typical CM like histopathological alterations including monocytic plugging in PbA-infected "young" BALB/c compared to C57BL/6J mice. The decreased expression of tight junction proteins (ZO-1 and Claudin-3) and Evan's blue extravasation was also more evident in BALB/c mice indicating a more permeable BBB. The increased cortical expression of TNF-α, IFN-γ, IL-4, IL-10, iNOS, eNOS, nNOS, and associated activation of brain resident cells in cortices of BALB/c with progressive parasitaemia depicts the cumulative involvement of host immune responses and parasite accumulation in progression of CM. Thus, the incongruity of cytokine balance resulted in worsening of disease manifestation in "young" BALB/c similar to pediatric CM.


Assuntos
Malária Cerebral , Animais , Camundongos , Malária Cerebral/parasitologia , Malária Cerebral/patologia , Interleucina-10/metabolismo , Camundongos Endogâmicos BALB C , Fator de Necrose Tumoral alfa/metabolismo , Sinais (Psicologia) , Interleucina-4/metabolismo , Camundongos Endogâmicos C57BL , Encéfalo/metabolismo , Citocinas/metabolismo , Modelos Animais de Doenças
6.
mBio ; 14(2): e0339122, 2023 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-36852995

RESUMO

Cerebral malaria (CM), the deadliest complication of Plasmodium infection, is a complex and unpredictable disease. However, our understanding of the host and parasite factors that cause CM is limited. Using a mouse model of CM, experimental CM (ECM), we performed a three-way comparison between ECM-susceptible C57BL/6 mice infected with ECM-causing Plasmodium ANKA parasites [ANKA(C57BL/6)], ECM-resistant BALB/c mice infected with Plasmodium ANKA [ANKA(BALB/c)], and C57BL/6 mice infected with Plasmodium NK65 that does not cause ECM [NK65(C57BL/6)]. All ANKA(C57BL/6) mice developed CM. In contrast, in ANKA(BALB/c) and NK65(C57BL/6), infections do not result in CM and proceed similarly in terms of parasite growth, disease course, and host immune response. However, parasite gene expression in ANKA(BALB/c) was remarkably different than that in ANKA(C57BL/6) but similar to the gene expression in NK65(C57BL/6). Thus, Plasmodium ANKA has an ECM-specific gene expression profile that is activated only in susceptible hosts, providing evidence that the host has a critical influence on the outcome of infection. IMPORTANCE Hundreds of thousands of lives are lost each year due to the brain damage caused by malaria disease. The overwhelming majority of these deaths occur in young children living in sub-Saharan Africa. Thus far, there are no vaccines against this deadly disease, and we still do not know why fatal brain damage occurs in some children while others have milder, self-limiting disease progression. Our research provides an important clue to this problem. Here, we showed that the genetic background of the host has an important role in determining the course and the outcome of the disease. Our research also identified parasite molecules that can potentially be targeted in vaccination and therapy approaches.


Assuntos
Malária Cerebral , Animais , Camundongos , Malária Cerebral/parasitologia , Plasmodium berghei/fisiologia , Camundongos Endogâmicos C57BL , Expressão Gênica , Modelos Animais de Doenças
7.
Parasitol Res ; 122(3): 789-799, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36602586

RESUMO

Cerebral malaria (CM) is the most severe form of malaria with the highest mortality rate and can result in life-long neurological deficits and ongoing comorbidities. Factors contributing to severity of infection and development of CM are not fully elucidated. Recent studies have indicated a key role of the gut microbiome in a range of health conditions that affect the brain, but limited microbiome research has been conducted in the context of malaria. To address this knowledge gap, the impact of CM on the gut microbiome was investigated in mice. C57BL/6J mice were infected with Plasmodium berghei ANKA (PbA) parasites and compared to non-infected controls. Microbial DNA from faecal pellets collected daily for 6-days post-infection were extracted, and microbiome comparisons conducted using 16S rRNA profiling. We identified significant differences in the composition of bacterial communities between the infected and the non-infected groups, including a higher abundance of the genera Akkermansia, Alistipes and Alloprevotella in PbA-infected mice. Furthermore, intestinal samples were collected post-cull for morphological analysis. We determined that the caecal weight was significantly lower, and the small intestine was significantly longer in PbA-infected mice than in the non-infected controls. We concluded that changes in microbial community composition were primarily driven by the infection protocol and, to a lesser extent, by the time of infection. Our findings pave the way for a new area of research and novel intervention strategies to modulate the severity of cerebral malaria disease.


Assuntos
Malária Cerebral , Microbiota , Animais , Camundongos , Malária Cerebral/parasitologia , RNA Ribossômico 16S/genética , Camundongos Endogâmicos C57BL , Intestinos/microbiologia , Plasmodium berghei/genética
8.
PLoS Pathog ; 18(11): e1010919, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36395123

RESUMO

Cerebral malaria (CM) is one of the leading causes of death due to malaria. It is characterised by coma, presence of asexual parasites in blood smear, and absence of any other reason that can cause encephalopathy. The fatality rate for CM is high, and those who survive CM often experience long-term sequelae, including cognitive and motor dysfunctions. It is unclear how parasites sequestered in the lumen of endothelial cells of the blood-brain barrier (BBB), and localised breakdown of BBB can manifest gross physiological changes across the brain. The pathological changes associated with CM are mainly due to the dysregulation of inflammatory and coagulation pathways. Other factors like host and parasite genetics, transmission intensity, and the host's immune status are likely to play a role in the development and progression of CM. This work focuses on the pathological mechanisms underlying CM. Insights from humans, mice, and in vitro studies have been summarised to present a cohesive understanding of molecular mechanisms involved in CM pathology.


Assuntos
Encefalopatias , Malária Cerebral , Humanos , Animais , Camundongos , Malária Cerebral/parasitologia , Células Endoteliais/patologia , Barreira Hematoencefálica/patologia , Encéfalo/patologia , Encefalopatias/patologia
9.
Adv Sci (Weinh) ; 9(36): e2202944, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36300890

RESUMO

Reorganization of host red blood cells by the malaria parasite Plasmodium falciparum enables their sequestration via attachment to the microvasculature. This artificially increases the dwelling time of the infected red blood cells within inner organs such as the brain, which can lead to cerebral malaria. Cerebral malaria is the deadliest complication patients infected with P. falciparum can experience and still remains a major public health concern despite effective antimalarial therapies. Here, the current understanding of the effect of P. falciparum cytoadherence and their secreted proteins on structural features of the human blood-brain barrier and their involvement in the pathogenesis of cerebral malaria are highlighted. Advanced 2D and 3D in vitro models are further assessed to study this devastating interaction between parasite and host. A better understanding of the molecular mechanisms leading to neuronal and cognitive deficits in cerebral malaria will be pivotal in devising new strategies to treat and prevent blood-brain barrier dysfunction and subsequent neurological damage in patients with cerebral malaria.


Assuntos
Malária Cerebral , Malária Falciparum , Humanos , Malária Cerebral/parasitologia , Malária Cerebral/patologia , Plasmodium falciparum/fisiologia , Malária Falciparum/metabolismo , Malária Falciparum/parasitologia , Encéfalo/patologia , Eritrócitos/metabolismo
10.
Acta Parasitol ; 67(4): 1514-1520, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35951222

RESUMO

PURPOSE: Malarial parasites are susceptible to oxidative stress. The effects of α-tocopheryloxy acetic acid (α-TEA), a vitamin E analog, on infection by Plasmodium berghei ANKA and P. falciparum in mice and human red blood cells (RBCs), respectively, were examined in this study. METHODS: For in vivo studies in mice, RBCs infected with P. berghei ANKA were inoculated via intraperitoneal injection and α-TEA was administered to C57BL/6 J male mice after infection. The blood-brain barrier (BBB) permeability was examined by Evans blue staining in experimental cerebral malaria at 7 days after infection. The in vitro inhibitory effect of α-TEA on P. falciparum 3D7 (chloroquine-sensitive strain) and K1 (multidrug-resistant strain) was tested using a SYBR Green I-based assay. RESULTS: When 1.5% α-TEA was administered for 14 days after infection, 88% of P. berghei ANKA-infected mice survived during the experimental period. Nevertheless, all the control mice died within 12 days of infection. Furthermore, the Evans blue intensity in α-TEA-treated mice brains was less than that in untreated mice, indicating that α-TEA might inhibit the destruction of the BBB and progression of cerebral malaria. The in vitro experiment revealed that α-TEA inhibited the proliferation of both the 3D7 and K1 strains. CONCLUSION: This study showed that α-TEA is effective against murine and human malaria in vivo and in vitro, respectively. Although α-TEA alone has a sufficient antimalarial effect, future research could focus on the structure-activity relationship to achieve better pharmacokinetics and decrease the cytotoxicity and/or the combined effect of α-TEA with existing drugs. In addition, the prophylactic antimalarial activity of premedication with α-TEA may also be an interesting perspective in the future.


Assuntos
Antimaláricos , Malária Cerebral , Malária Falciparum , Humanos , Camundongos , Masculino , Animais , Plasmodium berghei , Antimaláricos/farmacologia , Antimaláricos/uso terapêutico , Malária Cerebral/tratamento farmacológico , Malária Cerebral/parasitologia , Ácido Acético/farmacologia , Ácido Acético/uso terapêutico , Azul Evans/farmacologia , Azul Evans/uso terapêutico , Camundongos Endogâmicos C57BL , Malária Falciparum/tratamento farmacológico , Plasmodium falciparum
11.
mBio ; 13(5): e0174622, 2022 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-36036514

RESUMO

Cerebral malaria is a severe complication of Plasmodium falciparum infection characterized by the loss of blood-brain barrier (BBB) integrity, which is associated with brain swelling and mortality in patients. P. falciparum-infected red blood cells and inflammatory cytokines, like tumor necrosis factor alpha (TNF-α), have been implicated in the development of cerebral malaria, but it is still unclear how they contribute to the loss of BBB integrity. Here, a combination of transcriptomic analysis and cellular assays detecting changes in barrier integrity and endothelial activation were used to distinguish between the effects of P. falciparum and TNF-α on a human brain microvascular endothelial cell (HBMEC) line and in primary human brain microvascular endothelial cells. We observed that while TNF-α induced high levels of endothelial activation, it only caused a small increase in HBMEC permeability. Conversely, P. falciparum-infected red blood cells (iRBCs) led to a strong increase in HBMEC permeability that was not mediated by cell death. Distinct transcriptomic profiles of TNF-α and P. falciparum in HBMECs confirm the differential effects of these stimuli, with the parasite preferentially inducing an endoplasmic reticulum stress response. Our results establish that there are fundamental differences in the responses induced by TNF-α and P. falciparum on brain endothelial cells and suggest that parasite-induced signaling is a major component driving the disruption of the BBB during cerebral malaria, proposing a potential target for much needed therapeutics. IMPORTANCE Cerebral malaria is a severe complication of Plasmodium falciparum infection that causes the loss of blood-brain barrier integrity and frequently results in death. Here, we compared the effect of P. falciparum-infected red blood cells and inflammatory cytokines, like TNF-α, in the loss of BBB integrity. We observed that while TNF-α induced a small increase in barrier permeability, P. falciparum-infected red blood cells led to a severe loss of barrier integrity. Our results establish that there are fundamental differences in the responses induced by TNF-α and P. falciparum on brain endothelial cells and suggest that parasite-induced signaling is a major component driving the disruption of the BBB during cerebral malaria, proposing a potential target for much needed therapeutics.


Assuntos
Malária Cerebral , Malária Falciparum , Humanos , Plasmodium falciparum/metabolismo , Malária Cerebral/parasitologia , Fator de Necrose Tumoral alfa/farmacologia , Fator de Necrose Tumoral alfa/metabolismo , Células Endoteliais/metabolismo , Malária Falciparum/parasitologia , Encéfalo/parasitologia , Barreira Hematoencefálica , Citocinas/metabolismo
12.
Proc Natl Acad Sci U S A ; 119(36): e2206327119, 2022 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-36037380

RESUMO

Cerebral malaria (CM) is a life-threatening form of Plasmodium falciparum infection caused by brain inflammation. Brain endothelium dysfunction is a hallmark of CM pathology, which is also associated with the activation of the type I interferon (IFN) inflammatory pathway. The molecular triggers and sensors eliciting brain type I IFN cellular responses during CM remain largely unknown. We herein identified the stimulator of interferon response cGAMP interactor 1 (STING1) as the key innate immune sensor that induces Ifnß1 transcription in the brain of mice infected with Plasmodium berghei ANKA (Pba). This STING1/IFNß-mediated response increases brain CXCL10 governing the extent of brain leukocyte infiltration and blood-brain barrier (BBB) breakdown, and determining CM lethality. The critical role of brain endothelial cells (BECs) in fueling type I IFN-driven brain inflammation was demonstrated in brain endothelial-specific IFNß-reporter and STING1-deficient Pba-infected mice, which were significantly protected from CM lethality. Moreover, extracellular particles (EPs) released from Pba-infected erythrocytes activated the STING1-dependent type I IFN response in BECs, a response requiring intracellular acidification. Fractionation of the EPs enabled us to identify a defined fraction carrying hemoglobin degradation remnants that activates STING1/IFNß in the brain endothelium, a process correlated with heme content. Notably, stimulation of STING1-deficient BECs with heme, docking experiments, and in vitro binding assays unveiled that heme is a putative STING1 ligand. This work shows that heme resultant from the parasite heterotrophic activity operates as an alarmin, triggering brain endothelial inflammatory responses via the STING1/IFNß/CXCL10 axis crucial to CM pathogenesis and lethality.


Assuntos
Encéfalo , Heme , Interferon beta , Malária Cerebral , Proteínas de Membrana , Animais , Encéfalo/parasitologia , Células Endoteliais/imunologia , Células Endoteliais/metabolismo , Células Endoteliais/parasitologia , Endotélio/imunologia , Endotélio/parasitologia , Heme/metabolismo , Interferon beta/imunologia , Malária Cerebral/imunologia , Malária Cerebral/parasitologia , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos , Plasmodium berghei/metabolismo , Ativação Transcricional/imunologia
13.
Mol Biol Rep ; 49(11): 10579-10591, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35670928

RESUMO

BACKGROUND: Cerebral malaria is often pronounced as a major life-threatening neurological complication of Plasmodium falciparum infection. The complex pathogenic landscape of the parasite and the associated neurological complications are still not elucidated properly. The growing concerns of drugresistant parasite strains along with the failure of anti-malarial drugs to subdue post-recovery neuro-cognitive dysfunctions in cerebral malaria patients have called for a demand to explore novel biomarkers and therapeutic avenues. Due course of the brain infection journey of the parasite, events such as sequestration of infected RBCs, cytoadherence, inflammation, endothelial activation, and blood-brain barrier disruption are considered critical. METHODS: In this review, we briefly summarize the diverse pathogenesis of the brain-invading parasite associated with loss of the blood-brain barrier integrity. In addition, we also discuss proteomics, transcriptomics, and bioinformatics strategies to identify an array of new biomarkers and drug candidates. CONCLUSION: A proper understanding of the parasite biology and mechanism of barrier disruption coupled with emerging state-of-art therapeutic approaches could be helpful to tackle cerebral malaria.


Assuntos
Malária Cerebral , Malária Falciparum , Humanos , Malária Cerebral/tratamento farmacológico , Malária Cerebral/parasitologia , Malária Cerebral/patologia , Plasmodium falciparum/fisiologia , Barreira Hematoencefálica/patologia , Biomarcadores
14.
Curr Neurol Neurosci Rep ; 22(8): 499-513, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35699901

RESUMO

PURPOSE OF REVIEW: To discuss the neurological complications and pathophysiology of organ damage following malaria infection. RECENT FINDINGS: The principal advancement made in malaria research has been a better understanding of the pathogenesis of cerebral malaria (CM), the most dreaded neurological complication generally caused by Plasmodium falciparum infection. However, no definitive treatment has yet been evolved other than the use of antimalarial drugs and supportive care. The development of severe cerebral edema in CM results from two distinct pathophysiologic mechanisms. First, the development of "sticky" red blood cells (RBCs) leads to cytoadherence, where red blood cells (RBCs) get stuck to the endothelial walls and between themselves, resulting in clogging of the brain microvasculature with resultant hypoxemia and cerebral edema. In addition, the P. falciparum-infected erythrocyte membrane protein 1 (PfEMP1) molecules protrude from the raised knob structures on the RBCs walls and are in themselves made of a combination of human and parasite proteins in a tight complex. Antibodies to surfins, rifins, and stevors from the parasite are also located in the RBC membrane. On the human microvascular side, a range of molecules involved in host-parasite interactions, including CD36 and intracellular adhesion molecule 1, is activated during interaction with other molecules such as endothelial protein C receptor and thrombospondin. As a result, an inflammatory response occurs with the dysregulated release of cytokines (TNF, interleukins 1 and 10) which damage the blood-brain barrier (BBB), causing plasma leakage and brain edema. This second mechanism of CNS injury often involves multiple organs in adult patients in endemic areas but remains localized only to the central nervous system (CNS) among African children. Neurological sequelae may follow both P. falciparum and P. vivax infections. The major brain pathology of CM is brain edema with diffuse brain swelling resulting from the combined effects of reduced perfusion and hypoxemia of cerebral neurons due to blockage of the microvasculature by parasitized RBCs as well as the neurotoxic effect of released cytokines from a hyper-acute immune host reaction. A plethora of additional neurological manifestations have been associated with malaria, including posterior reversible encephalopathy syndrome (PRES), reversible cerebral vasoconstriction syndrome (RCVS), malarial retinopathy, post-malarial neurological syndrome (PMNS), acute disseminated encephalomyelitis (ADEM), Guillain-Barré syndrome (GBS), and cerebellar ataxia. Lastly, the impact of the COVID-19 pandemic on worldwide malaria control programs and the possible threat from co-infections is briefly discussed.


Assuntos
Edema Encefálico , COVID-19 , Malária Cerebral , Malária Falciparum , Síndrome da Leucoencefalopatia Posterior , Adulto , Criança , Citocinas , Humanos , Hipóxia , Malária Cerebral/complicações , Malária Cerebral/parasitologia , Malária Falciparum/complicações , Malária Falciparum/parasitologia , Pandemias , Plasmodium falciparum/fisiologia
15.
PLoS One ; 17(5): e0268347, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35550638

RESUMO

1,8-Cineole is a naturally occurring compound found in essential oils of different plants and has well-known anti-inflammatory and antimicrobial activities. In the present work, we aimed to investigate its potential antimalarial effect, using the following experimental models: (1) the erythrocytic cycle of Plasmodium falciparum; (2) an adhesion assay using brain microvascular endothelial cells; and (3) an experimental cerebral malaria animal model induced by Plasmodium berghei ANKA infection in susceptible mice. Using the erythrocytic cycle of Plasmodium falciparum, we characterized the schizonticidal effect of 1,8-cineole. This compound decreased parasitemia in a dose-dependent manner with a half maximal inhibitory concentration of 1045.53 ± 63.30 µM. The inhibitory effect of 972 µM 1,8-cineole was irreversible and independent of parasitemia. Moreover, 1,8-cineole reduced the progression of intracellular development of the parasite over 2 cycles, inducing important morphological changes. Ultrastructure analysis revealed a massive loss of integrity of endomembranes and hemozoin crystals in infected erythrocytes treated with 1,8-cineole. The monoterpene reduced the adhesion index of infected erythrocytes to brain microvascular endothelial cells by 60%. Using the experimental cerebral malaria model, treatment of infected mice for 6 consecutive days with 100 mg/kg/day 1,8-cineole reduced cerebral edema with a 50% reduction in parasitemia. Our data suggest a potential antimalarial effect of 1,8-cineole with an impact on the parasite erythrocytic cycle and severe disease.


Assuntos
Antimaláricos , Edema Encefálico , Malária Cerebral , Animais , Antimaláricos/química , Antimaláricos/farmacologia , Antimaláricos/uso terapêutico , Modelos Animais de Doenças , Células Endoteliais , Eucaliptol/farmacologia , Malária Cerebral/tratamento farmacológico , Malária Cerebral/parasitologia , Malária Cerebral/prevenção & controle , Camundongos , Camundongos Endogâmicos C57BL , Monoterpenos/farmacologia , Monoterpenos/uso terapêutico , Parasitemia/tratamento farmacológico , Parasitemia/parasitologia , Plasmodium berghei , Plasmodium falciparum
16.
ACS Infect Dis ; 8(5): 998-1009, 2022 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-35362944

RESUMO

Cerebral malaria (CM) is a serious central nervous system dysfunction caused by Plasmodium falciparum infection. In this study, we investigated the effect of Listeria monocytogenes (Lm) inoculation on experimental cerebral malaria (ECM) using Plasmodium berghei ANKA (PbA)-infected C57BL/6 mice. Live Lm inoculation inhibited the parasitemia and alleviated ECM symptoms. The protective effect against ECM symptoms was connected with improved brain pathology manifested as a less-damaged blood-brain barrier, decreased parasite sequestration, and milder local inflammation. Meanwhile, Lm inoculation decreased expression of cell adhesion molecules (ICAM-1 and VCAM-1) and accumulation of pathogenic CD8+ T cells in the brain. In keeping with the suppression of parasitemia, there was an upregulation of IFN-γ, IL-12, MCP-1, and NO expression in the spleen by Lm inoculation upon PbA infection. Early treatment with exogenous IFN-γ exhibited a similar effect to Lm inoculation on PbA infection. Taken together, Lm inoculation impedes the development of brain pathology in ECM, and early systemic IFN-γ production may play a critical role in these protective effects.


Assuntos
Listeria monocytogenes , Malária Cerebral , Animais , Encéfalo , Linfócitos T CD8-Positivos/parasitologia , Linfócitos T CD8-Positivos/patologia , Malária Cerebral/parasitologia , Malária Cerebral/patologia , Camundongos , Camundongos Endogâmicos C57BL , Parasitemia/patologia , Plasmodium berghei
17.
J Pharm Pharmacol ; 74(6): 800-811, 2022 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-35429389

RESUMO

OBJECTIVES: Cerebral malaria (CM) is a lethal complication of Plasmodium falciparum infection. The multifactorial pathogenesis of the disease involving parasitic invasion of erythrocytes and sequestration of infected erythrocytes within the cerebral blood vessels leading to neuroinflammation and blood-brain barrier (BBB) disruption demands a multi-pronged treatment strategy. This article gives a brief overview of the pathogenesis of CM, challenges associated with its treatment and potential strategies to combat the same. KEY FINDINGS: There are several roadblocks in the successful treatment of CM. Resistance to artemisinin-based therapies has been reported in malaria-endemic regions. The paucity of targeted delivery to the brain necessitates the administration of antimalarials such as quinine in large doses causing toxic effects. There is a need for compounds to prevent oxidative stress, neuroinflammation and BBB disruption to decrease the menace of neurological sequelae associated with CM. SUMMARY: Extensive research endeavours are now oriented towards investigating compounds that can act against neuroinflammation; developing brain-targeted nanocarriers to selectively deliver therapeutics against CM; and repurposing existing drugs and a combination of antimalarial and anti-inflammatory or immunomodulatory molecules for the treatment of CM. Protocols for evaluating novel proposed therapies against CM should be revisited to integrate monitoring of neurological parameters in parallel with the estimation of parasite load and survival.


Assuntos
Antimaláricos , Malária Cerebral , Malária Falciparum , Antimaláricos/farmacologia , Antimaláricos/uso terapêutico , Barreira Hematoencefálica , Encéfalo/patologia , Eritrócitos , Humanos , Malária Cerebral/complicações , Malária Cerebral/tratamento farmacológico , Malária Cerebral/parasitologia , Malária Falciparum/complicações , Malária Falciparum/tratamento farmacológico , Malária Falciparum/patologia
18.
Mini Rev Med Chem ; 22(12): 1607-1618, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34819002

RESUMO

Among all the parasitic diseases in humans, malaria is the most significant and malicious one. The widespread species are Plasmodium falciparum and Plasmodium vivax, but the infection caused by the former is the deadliest. According to the November 2018 report of the World Health Organization (WHO), a total of 219 million cases of malaria were reported globally in 2017, which led to an estimated 435,000 deaths. Mortality due to malaria is estimated at 1.5 - 2.7 million deaths each year. Among all the complications associated with Plasmodium falciparum infection, cerebral malaria (CM) is the most fretful, accounting for almost 13% of all malaria-related deaths. CM is a medical emergency that requires immediate clinical testing and treatment. A compromised microcirculation, with sequestration of parasitized erythrocytes, is central in the disease pathology. No effective therapeutic agents are available yet for the treatment of CM, and therefore, potential interventions are needed to be developed urgently. The currently available anti-malarial drugs lack lipophilicity and are thus not able to reach the brain tissues. Therefore, safe, cost-effective agents with improved lipophilicity possessing the potential to target brain tissues are needed to be searched in order to fight CM worldwide. The aim of present review is to systematically revise the published research work available concerning the development and evaluation of some potential drug targets in the management of CM.


Assuntos
Antimaláricos , Malária Cerebral , Malária Falciparum , Antimaláricos/farmacologia , Antimaláricos/uso terapêutico , Eritrócitos , Humanos , Malária Cerebral/tratamento farmacológico , Malária Cerebral/parasitologia , Malária Cerebral/patologia , Malária Falciparum/tratamento farmacológico , Malária Falciparum/parasitologia , Malária Falciparum/patologia , Plasmodium falciparum
19.
Autophagy ; 18(7): 1583-1598, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-34747313

RESUMO

Cerebral malaria is a neuroinflammatory disease induced by P. falciparum infection. In animal models, the neuro-pathophysiology of cerebral malaria results from the sequestration of infected red blood cells (iRBCs) in microvessels that promotes the activation of glial cells in the brain. This activation provokes an exacerbated inflammatory response characterized by the secretion of proinflammatory cytokines and chemokines, leading to brain infiltration by pathogenic CD8+ T lymphocytes. Astrocytes are a major subtype of brain glial cells that play an important role in maintaining the homeostasis of the central nervous system, the integrity of the brain-blood barrier and in mounting local innate immune responses. We have previously shown that parasitic microvesicles (PbA-MVs) are transferred from iRBCs to astrocytes. The present study shows that an unconventional LC3-mediated autophagy pathway independent of ULK1 is involved in the transfer and degradation of PbA-MVs inside the astrocytes. We further demonstrate that inhibition of the autophagy process by treatment with 3-methyladenine blocks the transfer of PbA-MVs, which remain localized in the astrocytic cell membrane and are not internalized. Moreover, bafilomycin A1, another drug against autophagy promotes the accumulation of PbA-MVs inside the astrocytes by inhibiting the fusion with lysosomes, and prevents ECM in mice infected with PbA. Finally, we establish that RUBCN/rubicon or ATG5 silencing impede astrocyte production in CCL2 and CXCL10 chemokines induced by PbA stimulation. Altogether, our data suggest that a non-canonical autophagy-lysosomal pathway may play a key role in cerebral malaria through regulation of brain neuro-inflammation by astrocytes.


Assuntos
Malária Cerebral , Plasmodium , Animais , Astrócitos/metabolismo , Autofagia , Malária Cerebral/parasitologia , Malária Cerebral/patologia , Camundongos , Camundongos Endogâmicos C57BL , Plasmodium berghei
20.
Malar J ; 20(1): 408, 2021 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-34663346

RESUMO

BACKGROUND: Standard treatment for both uncomplicated and severe malaria is artemisinin derivatives. Delayed parasite clearance times preceded the appearance of artemisinin treatment failures in Southeast Asia. Most worldwide malaria cases are in sub-Saharan Africa (SSA), where clinically significant artemisinin resistance or treatment failure has not yet been detected. The recent emergence of a resistance-conferring genetic mutation in the Plasmodium falciparum parasite in Africa warrants continued monitoring throughout the continent. METHODS: An analysis was performed on data from a retrospective cohort study of Malawian children with cerebral malaria admitted between 2010 and 2019 to a public referral hospital, ascertaining parasite clearance times across years. Data were collected from patients treated for severe malaria with quinine or artesunate, an artemisinin derivative. Parasite density was determined at admission and every subsequent 6 h until parasitaemia was below 1000 parasites/µl.The mean parasite clearance time in all children admitted in any one year was compared to the parasite clearance time in 2014, the first year of artesunate use in Malawi. RESULTS: The median population parasite clearance time was slower from 2010 to 2013 (quinine-treated patients) compared to 2014, the first year of artesunate use in Malawi (30 h (95% CI: 30-30) vs 18 h (95% CI: 18-24)). After adjustment for admission parasite count, there was no statistically significant difference in the median population parasite clearance time when comparing 2014 with any subsequent year. CONCLUSION: Malaria parasite clearance times in Malawian children with cerebral malaria remained constant between 2014 and 2019, arguing against evolving artemisinin resistance in parasites in this region.


Assuntos
Antimaláricos/uso terapêutico , Artesunato/uso terapêutico , Malária Cerebral/parasitologia , Malária Falciparum/parasitologia , Plasmodium falciparum/efeitos dos fármacos , Quinina/uso terapêutico , Adolescente , Antimaláricos/farmacologia , Artesunato/farmacologia , Criança , Pré-Escolar , Estudos de Coortes , Feminino , Humanos , Lactente , Malária Cerebral/tratamento farmacológico , Malária Falciparum/tratamento farmacológico , Malaui , Masculino , Quinina/farmacologia , Estudos Retrospectivos , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...